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Introduction 

 The world is not a well-defined place. 

 There is uncertainty in the facts  we know: 

 What’s the temperature?  Imprecise measures 

 Is Bush a good president?  Imprecise definitions 

 Where is the pit?  Imprecise knowledge 

 There is uncertainty in our inferences 

 If I have a blistery,  itchy rash and was gardening all 

weekend I probably have poison ivy 

 People make successful decisions all the time 

anyhow. 
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Sources of Uncertainty 
 Uncertain data 

 missing data, unreliable, ambiguous, imprecise representation, 

inconsistent, subjective, derived from defaults, noisy… 

 Uncertain knowledge 
 Multiple causes lead to multiple effects 

 Incomplete knowledge of causality in the domain 

 Probabilistic/stochastic effects 

 Uncertain knowledge representation 

 restricted model of the real system 

 limited expressiveness of the representation mechanism 

 inference process 

 Derived result is formally correct, but wrong in the real world 

 New conclusions are not well-founded (eg, inductive reasoning) 

 Incomplete, default reasoning methods 
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Reasoning Under Uncertainty 
So how do we do reasoning under uncertainty 

and with inexact knowledge? 

 heuristics 

ways to mimic heuristic knowledge processing methods 

used by experts 

 empirical associations 

 experiential reasoning 

 based on limited observations 

 probabilities 

 objective (frequency counting) 

 subjective (human experience ) 
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Decision making with uncertainty 

 Rational behavior: 

 For each possible action, identify the possible 

outcomes 

 Compute the probability of each outcome 

 Compute the utility of each outcome 

 Compute the probability-weighted (expected) utility 

over possible outcomes for each action 

 Select the action with the highest expected utility 

(principle of Maximum Expected Utility) 
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Some Relevant Factors 

 expressiveness 
 can concepts used by humans be represented adequately? 

 can the confidence of experts in their decisions be expressed? 

 comprehensibility 
 representation of uncertainty 

 utilization in reasoning methods 

 correctness 
 probabilities 

 relevance ranking 

 long inference chains 

 computational complexity 
 feasibility of calculations for practical purposes 

 reproducibility 
 will observations deliver the same results when repeated? 
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Basics of Probability Theory 
mathematical approach for processing uncertain 

information 

 sample space set 
X = {x1, x2, …, xn} 

 collection of all possible events 

 can be discrete or continuous 

 probability number P(xi):  likelihood of an event xi to occur 

 non-negative value in [0,1] 

 total probability of the sample space is 1 

 for mutually exclusive events, the probability for at least one of 
them is the sum of their individual probabilities 

 experimental probability 

 based on the frequency of events 

 subjective probability 

 based on expert assessment 
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Compound Probabilities 

 describes independent events 

 do not affect each other in any way 

 joint probability of two independent events A and B 

P(A  B) = P(A) * P (B) 

 union probability of two independent events A and 

B 

P(A  B) = P(A) + P(B) - P(A  B) 

 =P(A) + P(B) -  P(A) * P (B) 
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Probability theory 
 Random variables 

 Domain 

 

 Atomic event: complete 

specification of state 

 

 Prior probability: degree 

of belief without any other 

evidence 

 Joint probability: matrix 

of combined probabilities 

of a set of variables 

 Alarm, Burglary, Earthquake 

 Boolean (like these), discrete, 

continuous 

 Alarm=True  Burglary=True 

 Earthquake=False 

alarm  burglary  earthquake 

 P(Burglary) = .1 

 P(Alarm, Burglary) = 

alarm ¬alarm 

burglary .09 .01 

¬burglary .1 .8 
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Probability theory (cont.) 
 Conditional probability: 

probability of effect given 

causes 

 Computing conditional 

probs: 

 P(a | b) = P(a   b) / P(b) 

 P(b): normalizing constant 

 Product rule: 

 P(a  b) = P(a | b) P(b) 

 Marginalizing: 

 P(B) = ΣaP(B, a) 

 P(B) = ΣaP(B | a) P(a) 

(conditioning) 

 P(burglary | alarm) = .47 

P(alarm | burglary) = .9 

 P(burglary | alarm) = 

  P(burglary  alarm) / P(alarm) 

  = .09 / .19 = .47 

 P(burglary  alarm) =  

  P(burglary | alarm) P(alarm) = 

  .47 * .19 = .09 

 P(alarm) = 

   P(alarm  burglary) + 

   P(alarm  ¬burglary) = 

   .09+.1 = .19 
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Independence 
When two sets of propositions do not affect each others’ 

probabilities, we call them independent, and can easily compute 
their joint and conditional probability: 

 Independent (A, B)  if  P(A  B) = P(A) P(B),  P(A | B) = P(A) 

For example, {moon-phase, light-level} might be independent of 
{burglary, alarm, earthquake} 

 Then again, it might not:  Burglars might be more likely to 
burglarize houses when there’s a new moon (and hence little 
light) 

 But if we know the light level, the moon phase doesn’t affect 
whether we are burglarized 

 Once we’re burglarized, light level doesn’t affect whether the 
alarm goes off 

We need a more complex notion of independence, and methods 
for reasoning about these kinds of relationships 
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Exercise: Independence 

Queries: 

 Is smart independent of study? 

 Is prepared independent of study?  

p(smart  

 study  

prep) 

smart smart 

study study study study 

prepared .432 .16 .084 .008 

prepared .048 .16 .036 .072 
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Conditional independence 
Absolute independence: 

 A and B are independent if P(A  B) = P(A) P(B); 
equivalently, P(A) = P(A | B) and P(B)  = P(B | A) 

A and B are conditionally independent given C if 

 P(A  B | C) = P(A | C) P(B | C) 

This lets us decompose the joint distribution: 

 P(A  B  C) = P(A | C) P(B | C) P(C) 

Moon-Phase and Burglary are conditionally 
independent given Light-Level 

Conditional independence is weaker than absolute 
independence, but still useful in decomposing the full 
joint probability distribution 



14 

Exercise: Conditional independence 

 Queries: 

 Is smart conditionally independent of 
prepared, given study? 

 Is study conditionally independent of 
prepared, given smart? 

p(smart  

 study  prep) 

smart smart 

study study study study 

prepared .432 .16 .084 .008 

prepared .048 .16 .036 .072 
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Conditional Probabilities 

 describes dependent events 

 affect each other in some way 

 conditional probability of event a given that event 

B has already occurred 

P(A|B) = P(A  B) / P(B) 
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Bayesian Approaches 

 derive the probability of an event given another event 

 Often useful for diagnosis:  

 If X are (observed) effects and Y are (hidden) causes,  

 We may have a model for how causes lead to effects (P(X | Y)) 

 We may also have prior beliefs (based on experience) about 

the frequency of occurrence of effects (P(Y)) 

 Which allows us to reason abductively from effects to causes 

(P(Y | X)). 

 has gained importance recently due to advances in 

efficiency 

 more computational power available 

 better methods 
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Bayes’ Rule for Single Event 

 single hypothesis H, single event E 

P(H|E) = (P(E|H) * P(H)) / P(E) 

or 

 P(H|E) = (P(E|H) * P(H) /  

               (P(E|H) * P(H) + P(E|H) * P(H) ) 
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Bayes Example: Diagnosing Meningitis 

 Suppose we know that 

 Stiff neck is a symptom in 50% of meningitis cases 

 Meningitis (m) occurs in 1/50,000 patients 

 Stiff neck (s) occurs in 1/20 patients 

 Then 

 P(s|m) = 0.5, P(m) = 1/50000, P(s) = 1/20 

 P(m|s) = (P(s|m) P(m))/P(s) 

            = (0.5 x 1/50000) / 1/20  = .0002 

 So we expect that one in 5000 patients with a stiff 
neck to have meningitis. 
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Advantages and Problems Of Bayesian 

Reasoning 

 advantages 

 sound theoretical foundation 

 well-defined semantics for decision making 

 problems 

 requires large amounts of probability data 

 sufficient sample sizes 

 subjective evidence may not be reliable 

 independence of evidences assumption often not valid 

 relationship between hypothesis and evidence is reduced to a 
number 

 explanations for the user difficult 

 high computational overhead 
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Some Issues with Probabilities 
 Often don't have the data 

 Just don't have enough observations 

 Data can't readily be reduced to numbers or frequencies.   

 Human estimates of probabilities are notoriously 
inaccurate.  In particular, often add up to >1. 

 Doesn't always match human reasoning well. 

 P(x) = 1 - P(-x).  Having a stiff neck is strong (.9998!) evidence 
that you don't have meningitis.  True, but counterintuitive. 

 

 Several other approaches for uncertainty address some of 
these problems. 
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Dempster-Shafer Theory 

mathematical theory of evidence 

Notations 

 Environment T:  set of objects that are of interest 

 frame of discernment FD 

 power set of the set of possible elements 

 mass probability function m 

 assigns a value from [0,1] to every item in the frame of 

discernment 

  mass probability m(A) 

 portion of the total mass probability that is assigned to 

an element A of FD 
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D-S Underlying concept 

 The most basic problem with uncertainty is often with the 

axiom that P(X)  +P(not X) = 1 

 If the probability that you have poison ivy when you have a 

rash is .3, this means that a rash is strongly suggestive (.7) 

that you don’t have poison ivy.  

 True, in a sense, but neither intuitive nor helpful. 

 What you really mean is that the probability is .3 that you 

have poison ivy and .7 that we don’t know yet what you 

have. 

 So we initially assign all of the probability to the total set 

of things you might have:  the frame of discernment. 
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Environment:  Mentally retarded (MR), Learning disabled (LD), Not 

Eligible (NE) 

                                        {MR,    LD,   NE} 

 

 

{MR, LD}                             {MR, NE}                            {LD, NE} 

 

 

                  (MR}                      {LD}                        {NE} 

 

 

                                           {empty set} 

 

Example:  Frame of Discernment 
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Frame of Discernment:   

Mentally retarded (MR), Learning disabled (LD), Not Eligible (NE) 

                                        {MR,    LD,   NE}  m=1.0 

 

 

{MR, LD}                             {MR, NE}                            {LD, NE} 

 

                  (MR}                      {LD}                        {NE} 

 

 

                                           {empty set} 

 

Example:  We don’t know anything 
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Frame of Discernment:   

Mentally retarded (MR), Learning disabled (LD), Not Eligible (NE) 

                                        {MR,    LD,   NE} m=0.2 

 

 

{MR, LD}                             {MR, NE}                            {LD, NE} 

 

 

                  (MR} m=0.8                     {LD}                        {NE} 

 

 

                                           {empty set} 

Example:  We believe MR at 0.8 
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Frame of Discernment:   

Mentally retarded (MR), Learning disabled (LD), Not Eligible (NE) 

                                        {MR,    LD,   NE} m=0.3 

 

 

{MR, LD}                             {MR, NE}                            {LD, NE} m=0.7 

 

 

                  (MR}                      {LD}                        {NE} 

 

 

                                           {empty set} 

 

Example:  We believe NOT MR at 0.7 
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Belief and Certainty 

 belief Bel(A) in a subset A  

 sum of the mass probabilities of all the proper 

subsets of A 

 likelihood that one of its members is the conclusion 

 plausibility Pls(A) 

 maximum belief of A, upper bound 

 1 – Bel(not  A) 

 certainty Cer(A) 

 interval [Bel(A), Pls(A)] 

 expresses the range of belief 
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Frame of Discernment:   

Mentally retarded (MR), Learning disabled (LD), Not Eligible (NE) 

                                        {MR,    LD,   NE} m=0, Bel=1 

 

 

{MR, LD}                             {MR, NE}                        {LD, NE} 

m=.3, Bel=.6                      m=.2, Bel = .4                   m=.1, Bel=.4 

 

                  (MR}                      {LD}                        {NE} 

              m=.1, Bel=.1           m=.2, Bel=.2             m=.1, Bel=.1 

 

                                           {empty set} 

                                           m=0, Bel=0 

Example:  Bel, Pls 
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Interpretation:  Some Evidential 

Intervals 

 Completely true:  [1,1] 

 Completely false:  [0,0] 

 Completely ignorant: [0,1] 

 Doubt -- disbelief in X:  Dbt = Bel( not X) 

 Ignorance -- range of uncertainty:  Igr =Pls-Bel 

 Tends to support: [Bel, 1]  (0<Bel<1) 

 Tends to refute: [0, Pls]   (0>Pls<1) 

 Tends to both support and refute:  [Bel, Pls] 
(0<Bel<Pls<1) 
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Advantages and Problems of 

Dempster-Shafer 
 advantages 

 clear, rigorous foundation 

 ability to express confidence through intervals 

 certainty about certainty 

 problems 

 non-intuitive determination of mass probability 

 very high computational overhead 

 may produce counterintuitive results due to 

normalization when probabilities are combined 

 Still hard to get numbers 



31 

Certainty Factors 

 shares some foundations with Dempster-Shafer 

theory, but more practical 

 denotes the belief in a hypothesis H given that 

some pieces of evidence are observed 

 no statements about the belief is no evidence is 

present 

 in contrast to Bayes’ method 
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Belief and Disbelief 

measure of belief 

 degree to which hypothesis H is supported by 

evidence E 

 MB(H,E) = 1  IF P(H) =1 

              (P(H|E) - P(H)) / (1- P(H))  otherwise 

measure of disbelief 

 degree to which doubt in hypothesis H is supported 

by evidence E 

 MB(H,E) = 1  IF P(H) =0 

              (P(H) - P(H|E)) / P(H)) otherwise 
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Certainty Factor 

 certainty factor CF  

 ranges between -1 (denial of the hypothesis H) and 

1 (confirmation of H) 

CF = (MB - MD) / (1 - min (MD, MB)) 

 combining antecedent evidence 

 use of premises with less than absolute confidence 

E1  E2 = min(CF(H, E1), CF(H, E2)) 

E1  E2 = max(CF(H, E1), CF(H, E2)) 

E =  CF(H, E) 
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Combining Certainty Factors 

 certainty factors that support the same conclusion 

 several rules can lead to the same conclusion 

 applied incrementally as new evidence becomes 

available 

 

Cfrev(CFold, CFnew) =  

 CFold + CFnew(1 - CFold)  if both > 0 

 CFold + CFnew(1 + CFold)  if both < 0 

 CFold + CFnew / (1 - min(|CFold|, |CFnew|))  if one 

< 0 
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Advantages of Certainty Factors 

Advantages 

 simple implementation 

 reasonable modeling of human experts’ belief 

expression of belief and disbelief 

 successful applications for certain problem 
classes 

 evidence relatively easy to gather 

no statistical base required 
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Problems of Certainty Factors 

 Problems 

 partially ad hoc approach 

 theoretical foundation through Dempster-Shafer 

theory was developed later 

 combination of non-independent evidence 

unsatisfactory 

 new knowledge may require changes in the certainty 

factors of existing knowledge 

 certainty factors can become the opposite of 

conditional probabilities for certain cases 

 not suitable for long inference chains 
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Fuzzy Logic 

 approach to a formal treatment of uncertainty 

 relies on quantifying and reasoning through 
natural (or at least non-mathematical) language 

Rejects the underlying concept of an excluded 
middle:  things have a degree of membership in a 
concept or set 

 Are you tall? 

 Are you rich? 

 As long as we have a way to formally describe 
degree of membership and a way to combine 
degrees of memberships, we can reason. 
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Fuzzy Set 
categorization of elements xi into a set S 

 described through a membership function m(s) 

 associates each element xi with a degree of 
membership in S 

possibility measure Poss{xS} 

 degree to which an individual element x is a potential 
member in the fuzzy set S 

 combination of multiple premises 

Poss(A  B) = min(Poss(A),Poss(B)) 

Poss(A  B) = max(Poss(A),Poss(B)) 
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Fuzzy Set Example 

membership 

height 

 (cm) 0 
0 

50 100 150 200 250 

0.5 

1 short medium tall 
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Fuzzy vs. Crisp Set 

membership 

height 

 (cm) 0 
0 

50 100 150 200 250 

0.5 

1 short medium tall 
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Fuzzy Reasoning 

 In order to implement a fuzzy reasoning system 

you need  

 For each variable, a defined set of values for 

membership 

Can be numeric (1 to 10) 

Can be linguistic  

 really no, no, maybe, yes, really yes 

 tiny, small, medium, large, gigantic 

 good, okay, bad 

 And you need a set of rules for combining them 

Good and bad = okay. 
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Fuzzy Inference Methods 

 Lots of ways to combine evidence across rules 

 Poss(B|A) = min(1, (1 - Poss(A)+ Poss(B))) 

 implication according to Max-Min inference 

 also Max-Product inference and other rules 

 formal foundation through Lukasiewicz logic 

 extension of binary logic to infinite-valued logic 

Can be enumerated or calculated. 
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Some Additional Fuzzy Concepts 

 Support set:  all elements with membership > 0 

 Alpha-cut set:  all elements with membership 

greater than alpha 

Height:  maximum grade of membership 

Normalized:  height = 1 

Some typical domains 

Control (subways, camera focus) 

 Pattern Recognition (OCR, video stabilization) 

 Inference (diagnosis, planning, NLP) 
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Advantages and Problems of Fuzzy 

Logic 

 advantages 

 general theory of uncertainty 

 wide applicability, many practical applications 

 natural use of vague and imprecise concepts 

 helpful for commonsense reasoning, explanation 

 problems 

 membership functions can be difficult to find 

 multiple ways for combining evidence 

 problems with long inference chains 
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Uncertainty:  Conclusions 
 In AI we must often represent and reason about uncertain 

information 

 This is no different from what people do all the time! 

 There are multiple approaches to handling uncertainty.   

 Probabilistic methods are most rigorous but often hard to 
apply; Bayesian reasoning and Dempster-Shafer extend it 
to handle problems of independence and ignorance of data 

 Fuzzy logic provides an alternate approach which better 
supports ill-defined or non-numeric domains. 

 Empirically, it is often the case that the main need is some 
way of expressing "maybe".  Any system which provides for 
at least a three-valued logic tends to yield the same 
decisions.   


