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Introduction 

 The world is not a well-defined place. 

 There is uncertainty in the facts  we know: 

 What’s the temperature?  Imprecise measures 

 Is Bush a good president?  Imprecise definitions 

 Where is the pit?  Imprecise knowledge 

 There is uncertainty in our inferences 

 If I have a blistery,  itchy rash and was gardening all 

weekend I probably have poison ivy 

 People make successful decisions all the time 

anyhow. 
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Sources of Uncertainty 
 Uncertain data 

 missing data, unreliable, ambiguous, imprecise representation, 

inconsistent, subjective, derived from defaults, noisy… 

 Uncertain knowledge 
 Multiple causes lead to multiple effects 

 Incomplete knowledge of causality in the domain 

 Probabilistic/stochastic effects 

 Uncertain knowledge representation 

 restricted model of the real system 

 limited expressiveness of the representation mechanism 

 inference process 

 Derived result is formally correct, but wrong in the real world 

 New conclusions are not well-founded (eg, inductive reasoning) 

 Incomplete, default reasoning methods 
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Reasoning Under Uncertainty 
So how do we do reasoning under uncertainty 

and with inexact knowledge? 

 heuristics 

ways to mimic heuristic knowledge processing methods 

used by experts 

 empirical associations 

 experiential reasoning 

 based on limited observations 

 probabilities 

 objective (frequency counting) 

 subjective (human experience ) 
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Decision making with uncertainty 

 Rational behavior: 

 For each possible action, identify the possible 

outcomes 

 Compute the probability of each outcome 

 Compute the utility of each outcome 

 Compute the probability-weighted (expected) utility 

over possible outcomes for each action 

 Select the action with the highest expected utility 

(principle of Maximum Expected Utility) 
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Some Relevant Factors 

 expressiveness 
 can concepts used by humans be represented adequately? 

 can the confidence of experts in their decisions be expressed? 

 comprehensibility 
 representation of uncertainty 

 utilization in reasoning methods 

 correctness 
 probabilities 

 relevance ranking 

 long inference chains 

 computational complexity 
 feasibility of calculations for practical purposes 

 reproducibility 
 will observations deliver the same results when repeated? 
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Basics of Probability Theory 
mathematical approach for processing uncertain 

information 

 sample space set 
X = {x1, x2, …, xn} 

 collection of all possible events 

 can be discrete or continuous 

 probability number P(xi):  likelihood of an event xi to occur 

 non-negative value in [0,1] 

 total probability of the sample space is 1 

 for mutually exclusive events, the probability for at least one of 
them is the sum of their individual probabilities 

 experimental probability 

 based on the frequency of events 

 subjective probability 

 based on expert assessment 



8 

Compound Probabilities 

 describes independent events 

 do not affect each other in any way 

 joint probability of two independent events A and B 

P(A  B) = P(A) * P (B) 

 union probability of two independent events A and 

B 

P(A  B) = P(A) + P(B) - P(A  B) 

 =P(A) + P(B) -  P(A) * P (B) 
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Probability theory 
 Random variables 

 Domain 

 

 Atomic event: complete 

specification of state 

 

 Prior probability: degree 

of belief without any other 

evidence 

 Joint probability: matrix 

of combined probabilities 

of a set of variables 

 Alarm, Burglary, Earthquake 

 Boolean (like these), discrete, 

continuous 

 Alarm=True  Burglary=True 

 Earthquake=False 

alarm  burglary  earthquake 

 P(Burglary) = .1 

 P(Alarm, Burglary) = 

alarm ¬alarm 

burglary .09 .01 

¬burglary .1 .8 
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Probability theory (cont.) 
 Conditional probability: 

probability of effect given 

causes 

 Computing conditional 

probs: 

 P(a | b) = P(a   b) / P(b) 

 P(b): normalizing constant 

 Product rule: 

 P(a  b) = P(a | b) P(b) 

 Marginalizing: 

 P(B) = ΣaP(B, a) 

 P(B) = ΣaP(B | a) P(a) 

(conditioning) 

 P(burglary | alarm) = .47 

P(alarm | burglary) = .9 

 P(burglary | alarm) = 

  P(burglary  alarm) / P(alarm) 

  = .09 / .19 = .47 

 P(burglary  alarm) =  

  P(burglary | alarm) P(alarm) = 

  .47 * .19 = .09 

 P(alarm) = 

   P(alarm  burglary) + 

   P(alarm  ¬burglary) = 

   .09+.1 = .19 
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Independence 
When two sets of propositions do not affect each others’ 

probabilities, we call them independent, and can easily compute 
their joint and conditional probability: 

 Independent (A, B)  if  P(A  B) = P(A) P(B),  P(A | B) = P(A) 

For example, {moon-phase, light-level} might be independent of 
{burglary, alarm, earthquake} 

 Then again, it might not:  Burglars might be more likely to 
burglarize houses when there’s a new moon (and hence little 
light) 

 But if we know the light level, the moon phase doesn’t affect 
whether we are burglarized 

 Once we’re burglarized, light level doesn’t affect whether the 
alarm goes off 

We need a more complex notion of independence, and methods 
for reasoning about these kinds of relationships 
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Exercise: Independence 

Queries: 

 Is smart independent of study? 

 Is prepared independent of study?  

p(smart  

 study  

prep) 

smart smart 

study study study study 

prepared .432 .16 .084 .008 

prepared .048 .16 .036 .072 
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Conditional independence 
Absolute independence: 

 A and B are independent if P(A  B) = P(A) P(B); 
equivalently, P(A) = P(A | B) and P(B)  = P(B | A) 

A and B are conditionally independent given C if 

 P(A  B | C) = P(A | C) P(B | C) 

This lets us decompose the joint distribution: 

 P(A  B  C) = P(A | C) P(B | C) P(C) 

Moon-Phase and Burglary are conditionally 
independent given Light-Level 

Conditional independence is weaker than absolute 
independence, but still useful in decomposing the full 
joint probability distribution 
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Exercise: Conditional independence 

 Queries: 

 Is smart conditionally independent of 
prepared, given study? 

 Is study conditionally independent of 
prepared, given smart? 

p(smart  

 study  prep) 

smart smart 

study study study study 

prepared .432 .16 .084 .008 

prepared .048 .16 .036 .072 
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Conditional Probabilities 

 describes dependent events 

 affect each other in some way 

 conditional probability of event a given that event 

B has already occurred 

P(A|B) = P(A  B) / P(B) 
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Bayesian Approaches 

 derive the probability of an event given another event 

 Often useful for diagnosis:  

 If X are (observed) effects and Y are (hidden) causes,  

 We may have a model for how causes lead to effects (P(X | Y)) 

 We may also have prior beliefs (based on experience) about 

the frequency of occurrence of effects (P(Y)) 

 Which allows us to reason abductively from effects to causes 

(P(Y | X)). 

 has gained importance recently due to advances in 

efficiency 

 more computational power available 

 better methods 
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Bayes’ Rule for Single Event 

 single hypothesis H, single event E 

P(H|E) = (P(E|H) * P(H)) / P(E) 

or 

 P(H|E) = (P(E|H) * P(H) /  

               (P(E|H) * P(H) + P(E|H) * P(H) ) 
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Bayes Example: Diagnosing Meningitis 

 Suppose we know that 

 Stiff neck is a symptom in 50% of meningitis cases 

 Meningitis (m) occurs in 1/50,000 patients 

 Stiff neck (s) occurs in 1/20 patients 

 Then 

 P(s|m) = 0.5, P(m) = 1/50000, P(s) = 1/20 

 P(m|s) = (P(s|m) P(m))/P(s) 

            = (0.5 x 1/50000) / 1/20  = .0002 

 So we expect that one in 5000 patients with a stiff 
neck to have meningitis. 
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Advantages and Problems Of Bayesian 

Reasoning 

 advantages 

 sound theoretical foundation 

 well-defined semantics for decision making 

 problems 

 requires large amounts of probability data 

 sufficient sample sizes 

 subjective evidence may not be reliable 

 independence of evidences assumption often not valid 

 relationship between hypothesis and evidence is reduced to a 
number 

 explanations for the user difficult 

 high computational overhead 
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Some Issues with Probabilities 
 Often don't have the data 

 Just don't have enough observations 

 Data can't readily be reduced to numbers or frequencies.   

 Human estimates of probabilities are notoriously 
inaccurate.  In particular, often add up to >1. 

 Doesn't always match human reasoning well. 

 P(x) = 1 - P(-x).  Having a stiff neck is strong (.9998!) evidence 
that you don't have meningitis.  True, but counterintuitive. 

 

 Several other approaches for uncertainty address some of 
these problems. 
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Dempster-Shafer Theory 

mathematical theory of evidence 

Notations 

 Environment T:  set of objects that are of interest 

 frame of discernment FD 

 power set of the set of possible elements 

 mass probability function m 

 assigns a value from [0,1] to every item in the frame of 

discernment 

  mass probability m(A) 

 portion of the total mass probability that is assigned to 

an element A of FD 



22 

D-S Underlying concept 

 The most basic problem with uncertainty is often with the 

axiom that P(X)  +P(not X) = 1 

 If the probability that you have poison ivy when you have a 

rash is .3, this means that a rash is strongly suggestive (.7) 

that you don’t have poison ivy.  

 True, in a sense, but neither intuitive nor helpful. 

 What you really mean is that the probability is .3 that you 

have poison ivy and .7 that we don’t know yet what you 

have. 

 So we initially assign all of the probability to the total set 

of things you might have:  the frame of discernment. 
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Environment:  Mentally retarded (MR), Learning disabled (LD), Not 

Eligible (NE) 

                                        {MR,    LD,   NE} 

 

 

{MR, LD}                             {MR, NE}                            {LD, NE} 

 

 

                  (MR}                      {LD}                        {NE} 

 

 

                                           {empty set} 

 

Example:  Frame of Discernment 
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Frame of Discernment:   

Mentally retarded (MR), Learning disabled (LD), Not Eligible (NE) 

                                        {MR,    LD,   NE}  m=1.0 

 

 

{MR, LD}                             {MR, NE}                            {LD, NE} 

 

                  (MR}                      {LD}                        {NE} 

 

 

                                           {empty set} 

 

Example:  We don’t know anything 
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Frame of Discernment:   

Mentally retarded (MR), Learning disabled (LD), Not Eligible (NE) 

                                        {MR,    LD,   NE} m=0.2 

 

 

{MR, LD}                             {MR, NE}                            {LD, NE} 

 

 

                  (MR} m=0.8                     {LD}                        {NE} 

 

 

                                           {empty set} 

Example:  We believe MR at 0.8 
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Frame of Discernment:   

Mentally retarded (MR), Learning disabled (LD), Not Eligible (NE) 

                                        {MR,    LD,   NE} m=0.3 

 

 

{MR, LD}                             {MR, NE}                            {LD, NE} m=0.7 

 

 

                  (MR}                      {LD}                        {NE} 

 

 

                                           {empty set} 

 

Example:  We believe NOT MR at 0.7 
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Belief and Certainty 

 belief Bel(A) in a subset A  

 sum of the mass probabilities of all the proper 

subsets of A 

 likelihood that one of its members is the conclusion 

 plausibility Pls(A) 

 maximum belief of A, upper bound 

 1 – Bel(not  A) 

 certainty Cer(A) 

 interval [Bel(A), Pls(A)] 

 expresses the range of belief 
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Frame of Discernment:   

Mentally retarded (MR), Learning disabled (LD), Not Eligible (NE) 

                                        {MR,    LD,   NE} m=0, Bel=1 

 

 

{MR, LD}                             {MR, NE}                        {LD, NE} 

m=.3, Bel=.6                      m=.2, Bel = .4                   m=.1, Bel=.4 

 

                  (MR}                      {LD}                        {NE} 

              m=.1, Bel=.1           m=.2, Bel=.2             m=.1, Bel=.1 

 

                                           {empty set} 

                                           m=0, Bel=0 

Example:  Bel, Pls 
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Interpretation:  Some Evidential 

Intervals 

 Completely true:  [1,1] 

 Completely false:  [0,0] 

 Completely ignorant: [0,1] 

 Doubt -- disbelief in X:  Dbt = Bel( not X) 

 Ignorance -- range of uncertainty:  Igr =Pls-Bel 

 Tends to support: [Bel, 1]  (0<Bel<1) 

 Tends to refute: [0, Pls]   (0>Pls<1) 

 Tends to both support and refute:  [Bel, Pls] 
(0<Bel<Pls<1) 
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Advantages and Problems of 

Dempster-Shafer 
 advantages 

 clear, rigorous foundation 

 ability to express confidence through intervals 

 certainty about certainty 

 problems 

 non-intuitive determination of mass probability 

 very high computational overhead 

 may produce counterintuitive results due to 

normalization when probabilities are combined 

 Still hard to get numbers 
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Certainty Factors 

 shares some foundations with Dempster-Shafer 

theory, but more practical 

 denotes the belief in a hypothesis H given that 

some pieces of evidence are observed 

 no statements about the belief is no evidence is 

present 

 in contrast to Bayes’ method 
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Belief and Disbelief 

measure of belief 

 degree to which hypothesis H is supported by 

evidence E 

 MB(H,E) = 1  IF P(H) =1 

              (P(H|E) - P(H)) / (1- P(H))  otherwise 

measure of disbelief 

 degree to which doubt in hypothesis H is supported 

by evidence E 

 MB(H,E) = 1  IF P(H) =0 

              (P(H) - P(H|E)) / P(H)) otherwise 
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Certainty Factor 

 certainty factor CF  

 ranges between -1 (denial of the hypothesis H) and 

1 (confirmation of H) 

CF = (MB - MD) / (1 - min (MD, MB)) 

 combining antecedent evidence 

 use of premises with less than absolute confidence 

E1  E2 = min(CF(H, E1), CF(H, E2)) 

E1  E2 = max(CF(H, E1), CF(H, E2)) 

E =  CF(H, E) 
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Combining Certainty Factors 

 certainty factors that support the same conclusion 

 several rules can lead to the same conclusion 

 applied incrementally as new evidence becomes 

available 

 

Cfrev(CFold, CFnew) =  

 CFold + CFnew(1 - CFold)  if both > 0 

 CFold + CFnew(1 + CFold)  if both < 0 

 CFold + CFnew / (1 - min(|CFold|, |CFnew|))  if one 

< 0 
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Advantages of Certainty Factors 

Advantages 

 simple implementation 

 reasonable modeling of human experts’ belief 

expression of belief and disbelief 

 successful applications for certain problem 
classes 

 evidence relatively easy to gather 

no statistical base required 
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Problems of Certainty Factors 

 Problems 

 partially ad hoc approach 

 theoretical foundation through Dempster-Shafer 

theory was developed later 

 combination of non-independent evidence 

unsatisfactory 

 new knowledge may require changes in the certainty 

factors of existing knowledge 

 certainty factors can become the opposite of 

conditional probabilities for certain cases 

 not suitable for long inference chains 
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Fuzzy Logic 

 approach to a formal treatment of uncertainty 

 relies on quantifying and reasoning through 
natural (or at least non-mathematical) language 

Rejects the underlying concept of an excluded 
middle:  things have a degree of membership in a 
concept or set 

 Are you tall? 

 Are you rich? 

 As long as we have a way to formally describe 
degree of membership and a way to combine 
degrees of memberships, we can reason. 
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Fuzzy Set 
categorization of elements xi into a set S 

 described through a membership function m(s) 

 associates each element xi with a degree of 
membership in S 

possibility measure Poss{xS} 

 degree to which an individual element x is a potential 
member in the fuzzy set S 

 combination of multiple premises 

Poss(A  B) = min(Poss(A),Poss(B)) 

Poss(A  B) = max(Poss(A),Poss(B)) 
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Fuzzy Set Example 

membership 

height 

 (cm) 0 
0 

50 100 150 200 250 

0.5 

1 short medium tall 
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Fuzzy vs. Crisp Set 

membership 

height 

 (cm) 0 
0 

50 100 150 200 250 

0.5 

1 short medium tall 
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Fuzzy Reasoning 

 In order to implement a fuzzy reasoning system 

you need  

 For each variable, a defined set of values for 

membership 

Can be numeric (1 to 10) 

Can be linguistic  

 really no, no, maybe, yes, really yes 

 tiny, small, medium, large, gigantic 

 good, okay, bad 

 And you need a set of rules for combining them 

Good and bad = okay. 
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Fuzzy Inference Methods 

 Lots of ways to combine evidence across rules 

 Poss(B|A) = min(1, (1 - Poss(A)+ Poss(B))) 

 implication according to Max-Min inference 

 also Max-Product inference and other rules 

 formal foundation through Lukasiewicz logic 

 extension of binary logic to infinite-valued logic 

Can be enumerated or calculated. 
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Some Additional Fuzzy Concepts 

 Support set:  all elements with membership > 0 

 Alpha-cut set:  all elements with membership 

greater than alpha 

Height:  maximum grade of membership 

Normalized:  height = 1 

Some typical domains 

Control (subways, camera focus) 

 Pattern Recognition (OCR, video stabilization) 

 Inference (diagnosis, planning, NLP) 
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Advantages and Problems of Fuzzy 

Logic 

 advantages 

 general theory of uncertainty 

 wide applicability, many practical applications 

 natural use of vague and imprecise concepts 

 helpful for commonsense reasoning, explanation 

 problems 

 membership functions can be difficult to find 

 multiple ways for combining evidence 

 problems with long inference chains 
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Uncertainty:  Conclusions 
 In AI we must often represent and reason about uncertain 

information 

 This is no different from what people do all the time! 

 There are multiple approaches to handling uncertainty.   

 Probabilistic methods are most rigorous but often hard to 
apply; Bayesian reasoning and Dempster-Shafer extend it 
to handle problems of independence and ignorance of data 

 Fuzzy logic provides an alternate approach which better 
supports ill-defined or non-numeric domains. 

 Empirically, it is often the case that the main need is some 
way of expressing "maybe".  Any system which provides for 
at least a three-valued logic tends to yield the same 
decisions.   


